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Characterization of the noise effect on weak synchronization
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We investigate the noise effect on weak synchronization in two coupled identical one-dimerigénal
maps. Due to the existence of positive local transverse Lyapunov exponents, the weakly stable synchronous
chaotic attracto(SCA) becomes sensitive with respect to the variation of noise intensity. To quantitatively
characterize such noise sensitivity, we introduce a quantifier, called the noise sensitivity expts®Ent-or
the case of bounded noise, the values of the NSE are found to be the same as those of the exponent charac-
terizing a parameter sensitivity of the weakly stable SCA in presence of a parameter mismatch between the two
1D maps. Furthermore, it is found that the scaling exponent for the average time spent near the diagonal for
both the bubbling and riddling cases occurring in the regime of weak synchronization is given by the reciprocal
of the NSE, as in the parameter-mismatching case. Consequently, both the noise and parameter mismatch have
the same effect on the scaling behavior of the average characteristic time.
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[. INTRODUCTION set of repelling “holes,” belonging to the basin of another
attractor(or infinity) [16].

Recently, the phenomenon of synchronization in coupled However, in a real situation a small noise and a small
chaotic systems has become a field of intensive study. Fanismatch between the subsystems are unavoidable. Hence
this case of chaos synchronization, a synchronous chaotibe effect of noise and parameter mismatching must be taken
motion occurs on an invariant subspace of the whole phasato consideration for the study on the loss of chaos synchro-
space[1-4]. Particularly, this type of chaos synchronization nization. In the regime of weak synchronization, transversely
has attracted much attention, because of its potential practitnstable periodic orbits are embedded in the SCA. Hence,
cal application in secure communicatips. when a typical trajectory visits the neighborhoods of such

If a synchronous chaotic attract@®CA) on the invariant unstable periodic orbits, it experiences local transverse repul-
subspace is stable against a perturbation transverse to tfn from the diagonal. As a result, the typical trajectory may
invariant subspace, it may become an attractor in the wholBave segments exhibiting positive loddinite time) trans-
phase space. Properties of transverse stability of the SCA a#¢"S€ Lyapunov exponents, even if the averaged transverse
intimately associated with transverse bifurcations of unstabl&Y2Punov exponent is negative. Because of the existence of
periodic orbits embedded in the SC&—12. If all such these positive local transverse Lygpunoy exponents, the
unstable periodic orbits are transversely stable, the SCA b _er_:lkly stable SCA bgcome; sensitive with respect to the
comes asymptotically stable, and hence we have “strongya”at'on of the noise intensity and mismatching parameter.

7 : This is in contrast to the case of the strong synchronization
synchronization. However, as the coupling parameter PaSSERAt has no such sensitivity. Note also that, due to the exis-

through a threshold value, an unstable periodic prblt f|_rs ence of positive local Lyapunov exponents, strange noncha-
becomes transversely unstable through a local bifurcationyi. auractors that appear typically in quasiperiodically
After this first transverse bifurcation, trajectories may be 105 .aq systems exhibit a sensitivity with respect to the phase
cally repelled from the invariant subspace when they visit they the quasiperiodic force. Such phase sensitivity was char-
neighborhood of the transversely unstable periodic orbigcterized quantitatively in terms of the phase sensitivity ex-
point. Thus, loss of strong synchronization begins with sucrponent[ﬂ]. In a similar way, two of ugJalnine and Kim

a first transverse bifurcation, and then we have “weak” syn-introduced the parameter sensitivity exponent, and quantita-
chronization. For this case, intermittent bursting or basin ridtjvely characterized the degree of the parameter sensitivity of
dling may occur depending on the existence of an absorbinghe weakly stable SCALS].

area, controlling the global dynamics, inside the basin of In this paper we investigate the effect of bounded noise on
attraction[10—13. In the presence of an absorbing area, actweak synchronization in two coupled identical one-
ing as a bounded trapping vessel, locally repelled trajectoriedimensional1D) maps with an invariant diagonal. To quan-
from the invariant subspace are restricted to move within theitatively characterize the noise sensitivity of the weakly
absorbing area, and exhibit transient intermittent burstingtable SCA, we introduce a quantifier, called the noise sen-
from the invariant subspadd4,15. On the other hand, in sitivity exponent(NSE), in Sec. Il. Thus the NSE that mea-
the absence of such an absorbing area, the locally repellexslires the degree of the noise sensitivity becomes a quantita-
trajectories will go to another attractdor infinity), and tive characteristic of the weakly stable SCA. As the coupling
hence the basin of attraction becomes riddled with a densgarameterc is varied away from the point of the first
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transverse bifurcation, successive transverse bifurcations of
periodic saddles embedded in the SCA occur. Hence the
value of the NSE increases because local transverse repul-
sion of the embedded periodic repellers becomes more and
more strong, and it tends to infinity asapproaches the
blow-out bifurcation point where the averaged transverse
Lyapunov exponent becomes zero. As a result of this blow-
out bifurcation, the weakly stable SCA becomes transversely
unstablg 19]. Furthermore, the values of the NSE are found
to become the same as those of the parameter sensitivity
exponent, because their values are determined only by the
(same local transverse Lyapunov exponents of the weakly
stable SCA. In the presence of noise, the weakly stable SCA
is replaced by a bubbling attractor or a chaotic transient. In
both cases, the quantity of interest is the average time spent
near the diagonali.e., the average interburst time and the
average chaotic transient lifetimfgl5]. In terms of the NSE,

the noise effect on the power-law scaling behavior of such
average characteristic timeis characterized in Sec. lll. As
the NSE increases, local transverse repulsion of the periodic
repellers embedded in the SCA becomes strong, and hence

becomes short. It is thus found that the scaling exponent for "o 2500 5000
7 and the NSE has a reciprocal relation, as in the parameter- n

mismatching casgl8]. Hence the noise and parameter mis-

match have essentially the same effect on the power-law o5

scaling behavior of. Finally, we give a summary in Sec. IV.

IIl. CHARACTERIZATION OF THE NOISE SENSITIVITY

In this section, we study the effect of additive and para-
metric noise on the weakly stable SCA. For the case of weak
synchronization, the SCA becomes sensitive with respect to
the variation of noise strength. We introduce a quantifier,
called the NSE, and quantitatively characterize the noise sen- -2.5
sitivity of the weakly stable SCA. It is thus found that the 1.2 0.0 1.2
values of the NSE become the same as those of the param-
eter sensitivity exponent, independently of whether the noise
is additive or parametric.

We first investigate the effect of additive noise on weak
synchronization in two coupled identical 1D mdpd2]

FIG. 1. Effect of the additive noise withr=0.0005 on weak
synchronization fom=1.82 in the unidirectionally coupled case of
a=1. (a) A bubbling attractor andb) the evolution of the trans-
verse variableu, (=x,—Y,) representing the deviation from the
diagonal versus for the bubbling case of=—0.7. For the rid-
JXari=F (0 yn) =f(Xn,a)+ (1= a)eg(Xn,yn) + ot dling case ofc= —2.91 the SCA with a basifgray region riddled
| Yn+1=G(Xn,yn)=f(yn.a)+cg(y, ,xn)+g§f12), with a dense set of repelling “holes” leading to divergent orbits
) (white region for ¢=0 is transformed into a chaotic transient
(black dot$ for o= 0.0005 as shown ifc). The sequence @i} in
wherex, andy, are state variables of the subsystems at db) and the chaotic transient {ig) are obtained from the trajectories
discrete timen, local dynamics in each subsystem with astarting from the same initial poink{ ,y5)=(0.5,0.5).
control parametea is governed by the 1D mafx,a)=1 ) ) o
—ax?, c is a coupling parameter between the two sub-Y=X: in the (x—_y) phase space. Howeve_r, in are_al situation
systems, and(x,y) is a coupling function of the form noise is unavoidable, and hence the diagonal is no longer
invariant. To take into consideration such noise effect, ran-

gOy) =y2—x2. 2y dom numbers are added to E(). For this cases( (i
=1,2) are statistically independent random numbers chosen

For =0, the Coup“ng becomes Symmetricy while for non- at each discrete time from the uniform distribution with a
zeroa (0<a=<1) it becomes asymmetric. The extreme casezero mean(£()=0 and a unit variancés!’?)=1. Hence

of asymmetric coupling witlk=1 corresponds to the unidi- 551') are just bounded random values uniformly distributed in
rectional coupling. In such a wayy tunes the degree of the interval[ —/3,y3], and o controls the “strength” of
asymmetry in the coupling. In an ideal case without noisesuch a random noise.

(i.e., 0=0), there exists an invariant synchronization line, As an example, we choose the unidirectionally coupled
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case ofa=1 [11]. For this case, the drive 1D map acts on Myt . L9,

the response 1D map, while the response 1D map does not =[fx(xq @)= (2= a)ch(xq)]—-—
influence the drive one. Here we fix the value afas a o=0 o=0
=1.82, and investigate the noise effect by varying the cou- +[EP -], 4

pling parametec. For this case an SCA exists in the interval
of ¢y [=—2.963<c<c, ,[=—0.677]. As the coupling pa- Wwheref, is the derivative of with respect tox, {5, ym)tis
rameterc passes, or ¢, the SCA loses its transverse the synchronous orbit with; =yj; for =0, andh(x) is a
stability through a blow-out bifurcation, and then a completereduced  coupling  function  defined by h(x)
desynchronization occurs. In the regime of synchronization=dg(x,y)/dyl,- [20]. Iterating the formula(4) along a
a strongly stable SCA exists fag |[=—2.789<c<c [= synchronous trajectory starting from an initial poig (y)
—0.850]. For this case of strong synchronization, the SCAon the diagonal, we may obtain derivatives at all subsequent
exhibits no noise sensitivity, because all periodic saddles erpoints of the trajectory:
bedded in the SCA are transversely stable. However, as the N
coupling parametec passe<;, andc; |, bubbling and rid- % _ *r £(1) _ £(2) * %
e r , ! _ 2 Ry OG)LED 6211+ Ry(x5) :
ing transitions occur through the first transverse bifurca- do | _, k=1 ao| _,
tions of periodic saddles, respectively, Rgfl] and then we (5)
have weak synchronization. For this case, the weakly stable
SCA exhibits a noise sensitivity, because of local transvers@’here
repulsion of the periodic repellers embedded in the SCA. M-1
Hence, however, small the noise strengtha persistent in- RuOx)= [T [f(x%.,@)—(2—a)ch(xt, )] (6)
termittent bursting, called the attractor bubbling, occurs in i=0
the regime of bubblingd; ,<c<cy, ). Figures 1a) and Xb)
show such attractor bubbling far=0.0005. On the other
hand, in the regime of riddlingcg ;<c<c;,), the weakly
stable SCA with a riddled basin fer=0 is transformed into
a chaotic transientdenoted by black dotswith a finite life-
time in the presence of noise, as shown in Fig,).1As c is 1
changed away frone,, or c,,, transversely unstable peri- oy(Xp)= MmlRm(XE)L (7)
odic repellers appear successively in the SCA via transverse
bifurcations. Then the degree of the noise sensitivity of therhys Rw(x%) becomes a localtransverse stabilitymulti-
SCA increases, because of the increase in the strength gfier that determines local sensitivity of the transverse mo-
local transverse repulsion of the periodic repellers embeddegbn during a finite timeM. As M — o, O--I[II approaches the
in the SCA. usual transverse Lyapunov exponentthat denotes the av-
To quantitatively characterize the noise sensitivity of theerage exponential rate of divergence of an infinitesimal per-
SCA, we consider an orb{t(x, ,y,)} starting from an initial  turbation transverse to the SCA. If we introduce a new ran-
point on the diagonali.e., x,=Yo). As the strength of the dom variabley,= &Y - 2 Eq. (5) reduces to
local transverse repulsion from the diagonal increases, the
SCA becomes more and more sensitive with respect to the Jun _s0x)=S R N 8
variation of o. Such noise sensitivity of the SCA far=0 Jo 70_ N (Xo)_k:1 N=k(Xic) -1 (8)
may be characterized by calculating the derivative of the 7
transverse variablel, (=x,—Y,), denoting the deviation becauseduy/do|,_,=0. Here 5, are bounded random
from the diagonal, with respect 1o, numbers distributed in the intervgt2/3,24/3], and their
distribution density function will be given below.
For the case of weak synchronization, transversely un-

andRy=1. Note that the factoRy (x?,) is associated with a
local (M-time) transverse Lyapunov exponarfh(x;*n) of the
SCA that is averaged ovéd synchronous orbit points start-
ing from x?, as follows:

N

IUn i1 IXnt1 Y1 IF(Xn,Yn) stable periodic repellers are embedded in the SCA. When a
90 Ry T a0 T X typical trajectory visits neighborhoods of such repellers and
o=0 7=0 o=0 " o=0 their preimages, it has segments experiencing local repulsion
G (Xy,Yn) X, AF(Xn,Yn) from the diagonal. Consequently, the distribution of local
T o Go + T transverse Lyapunov exponen@ for a large ensemble of
" o=0 o=0 " le=0  trajectories and larg® may have a positive taflsee Fig. 5
IG(Xn, V) A » . in Rgf. [18]]. For the segments of a trajector¥ exhibiting a
Ty }% +[é& =& positive local transverse Lyapunov exponent,>0), the
" =0 o=0 local multipliers Ry, [=*expyM)] can be arbitrarily

(3) large, and hence the partial si8{j’ may be arbitrarily large.
This implies the unbounded growth of the derivatives
dun!dol,—q asN tends to infinity. Consequently, the weakly
Using Eq.(1), we obtain the following recurrence relation stable SCA may exhibit a noise sensitivity. As an example,
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FIG. 2. (a) Intermittent behavior of the partial su[s{’| for a FIG. 3. (a8 Noise sensitivity function'y for a=1, a=1.82,
=1, a=1.82, andc=—0.7. (b) The functionyy looking only at  andc=—0.7 that takes the minimum value of; in the ensemble
the maximum off S{’|. Note thatyy grows unboundedly WithN.  containing 100 randomly chosen initial orbit points on the diagonal.
The results in(a) and (b) are obtained from the trajectory starting |t js well fitted with a dashed line with slopg=2.58. (b) Plot of the

from the initial orbit point &5 ,y5)=(0.5,0.5). NSEs§ (denoted by the open circlegersusc for the bubbling and
riddling cases fora=1 anda=1.82. Note that the values of the

we consider the case of weak synchronizationder—0.7. NSEs are the same as those of the parameter sensitivity exponent

If we iterate Eqs.(1) and (4) starting from an initial orbit (denoted by the crossewithin the numerical accuracy.

point (x§ ,y5) on the diagonal anduy/do|,-o=0, then we . o

obtain the partial sunS{"(x*) of Eq. (8). The results of range ofxe (1-a,1) on the diagonal, and take the minimum

such calculation for a trajectory starting from3(y?) value of vy with respect to the initial orbit points,

=(0.5,0.5) are presented in Fig(a2 The quantity S\

I'y=minyn(X5). 10
seems very intermittent. However, looking only at the maxi- N o (o) (10
mum 0
Figure 3a) shows a noise sensitivity functiohiy for c=
(X&) = max |S"(x¥)], (99  —0.7. Note thal’y grows unboundedly with some powar
O0<k=N
I'y=N°. (11

one can easily see the boundednessS@t. Figure 2b)  Here the values=2.58 is a quantitative characteristic of the
shows such functioryy . Note thatyy grows unboundedly noise sensitivity of the SCA, and we call it as NSE. In each
and exhibits no saturation. Consequently, the weakly stablgegime of bubbling or riddling, we obtain the NSEs by
SCA exhibits a noise sensitivity. This is in contrast to thechanging the coupling parametefrom the bubbling or rid-
case of strong synchronization for which the SCA has najling transition point to the blow-out bifurcation point. For
noise sensitivity because the functign saturates with\. obtaining a satisfactory statistics, we also consider 100 en-
The growth rate of the functioy(xg) with time N rep-  sembles for each, each of which contains 100 initial orbit
resents a degree of the noise sensitivity, and can be used ap@ints randomly chosen with uniform probability in the
quantitative characteristic of the weakly stable SCA. How-range ofxe (1—a,1) on the diagonal and choose the aver-
ever, yn(Xg) depends on a particular trajectory. To obtain aage value of the 100 NSEs obtained in the 100 ensembles.
representative quantity, we consider an ensemble of initiaFigure 3b) shows the plot of such NSEdenoted by circles
points randomly chosen with uniform probability in the versusc. Note that the NSB monotonically increases a&ss
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varied away from the bubbling or riddling transition point, 0.32 .
and tends to infinity as approaches the blow-out bifurcation @)
point. This increase in the noise sensitivity of the SCA is 5 : 4
caused by the increase in the strength of local transverse
repulsion of periodic repellers embedded in the SCA. After € o016 |- ' -
the blow-out bifurcation, the weakly stable SCA is trans- o C
formed into a transversely unstable chaotic saddle exhibiting B J
an exponential noise sensitivity. Thus a complete desynchro-
nization occurs. 0.00 ! | .
We now compare the formul@®) for the partial suns{ 35 0.0 . 35
with the following analogous formula fa that has been 1 :
obtained in the parameter-mismatching cpE®:

N 16 — : | :

au
e | =H06)=Z, Ribfelxi-1.2), (12
wheree is a mismatching parametefr, is the derivative of < 8t -
f(x,a) with respect toa, andRy_ are local multipliers of a
Eq. (6). As in the case of noise, the weakly stable SCA ex- 5 4
hibits a parameter sensitivity because of the unbounded d
growth of the partial suns{P’ with N. For each case of the 0
noise and parameter mismat(ﬂiﬁ"p) represents the sum of -1.0 0.5 0.0
the (same local multipliersRy_ ., multiplied by some coef- f (x)
ficients. For the case of noise, the coefficienfs ; are ran-
dom numbers chosen from the bounded distribution density 4 . .
function, P(n)=-|7/+3/6, in the interval
[—24/3,2/3] [see Fig. 4a)], which can be easily obtained - 7
using the uniform distribution density functions in the inter-
val[ —/3,y/3] for the random variables, andé&,. Since the
random numbersy, are bounded, the boundedness of the
partial sumS{" is determined just by the local multipliers
Ry - For the case of parameter mismatch, the coefficients are
the derivative value$,(x;_,,a) (= —xﬁ_zl). Since the syn-
chronous trajectoryx’} on the diagonal is chaotic, the co-
efficientsf, may be regarded as “weakly correlated” random nfa(x)
numbers. Using a histogram method, we obtain the distribu-
tion density function forf,, which is shown in Fig. ®).
Since the values of, are bou_nded m) t.he intervar- l,Q], Distribution density functions for the variablég(x) (= —x?) and
the boundedness of the parpa_l SLBK? IS aIS_o determined nfa(x) in the case olx=1 anda=1.82. For these cases, the dis-
only by the(same local multipliersRy,, as in the case of ipytion density functions are obtained using a histogram method
noise. This implies that the noise sensitivity functibyy, s follows. We divide each interva — 1,0] for the case(b) and
grows unboundedly with the same power as in the case qf_z\/§,2¢§] for the case ofc)) into 1000 bins, and get the dis-
parameter mismatch. Hence the values of the N&#oted  tripution density from the data of $@rbit points.
by circleg become the same as those of the parameter sen-
sitivity exponent(denoted by crossgsas shown in Fig. &). Here£™® and&® are bounded random numbers chosen from
Note that this is a general result valid for any case ofthe uniform distribution with a zero mean and a unit vari-
bounded noise. ance, andr represents the amplitude of noise. Following the
In addition to the case of additive noise, we also considesgme procedure as in the case of additive noise, one can
the case where the nonlinearity parameters of the 1D mapsasily obtain the following recurrence relation for the deriva-

have small random variations due to external noise. Thesgye of the transverse variable, (=x,—Y,) with respect to
parametric fluctuations can be simulated by modulating thghe noise strengthr,

values of the nonlinearity parameters by uniform random
numbers in a small interval. Thus we investigate the effect of Mns1q
such parametric noise on weak synchronization in the fol- P

P(nf (x))
|
|

0 1
-3.5 0.0 3.5

FIG. 4. (a) Distribution density functionP(7) (=—13|7|
+(+/3/6)) for the random variable; (= &1 —¢3). (b) and (c)

_ * * Jdup
O_[fX(Xn ,a)— (2—a)ch(x; )]5

lowing two coupled 1D maps: o= =0
(1)_ £(2)
Xns1=F(Xy,a+ €M)+ (1— a)cg(Xn,Yn), +aOG @)y = &7, (14
Vs 1=F(yn.a+ o) +cglyn . Xn). Iterating the above formula along the synchronous trajectory
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starting from an initial point X5 ,y5) on the diagonal, we
obtain the derivatives at all points of the trajectory,

N
=SV06)= 2 Ru- ) 71 2fa(X-1,),

(19

duy
Jdo =0

where 7,= ¢V — £2) and Ry_, are local multipliers of Eq.

(6). Comparing this formula with E¢8), one can see that
the only difference between them is the coefficients of the
(same local multipliersRy_y. For the case of parametric
noise, the coefficients,_;f.(x;_,,a) are also weakly cor-
related random numbers, because the synchronous trajectory
{x}} on the diagonal is chaotic. The distribution density
function for f, is presented in Fig.(4). Since the values of

0
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-2.85-0.79
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nf, are bounded in the intervdl-2./3,2/3], the coeffi-
cients have no effect on the unbounded growtiS@f, as in FIG. 5. (a) Plot of the scaling exponenjs (open circlesfor the
the case of additive noise. Consequently, the values of thaverage characteristic tintee., average interburst time for the bub-
NSE for both cases of additive and parametric noise becom@ing case and_ average chaotic tr_a}nsient_ lifetime for the riddling
the same, which has also been numerically confirmed in th&2S¢ versusc in the case of additive noise whes=1 anda
unidirectionally coupled case af=1. In this sense, the ef- ~1.82. They agree well with the reciprocals of the N$&ssejs
fect of parametric noise on weak synchronization becomes
the same as that of the additive noise. the diagonal. For the case of the bubbling attractas the

So far, we have investigated the noise effect in the unidiaverage interburst time, while for the case of the chaotic
rectionally coupled case with the asymmetry parameter transient,r is its average lifetime. Ag is varied from the
=1. Through Eq(4), one can easily see that the NSE for abubbling or riddling transition pointy becomes short be-
given (a,c) in the case ofx=1 is the same as that for the cause the strength of local transverse repulsion of periodic
value of[a,c/(2—«)] in other coupled 1D maps with 0 repellers embedded in the SCA increases.
<a<1 in Eq. (1). Thus, the results of the NSEs given in  For the case of bubbling, the bubbling attractor is in the
Fig. 3(b) may be converted into those for the case of generalaminar phase when the magnitude of the deviation from the
« only by a scale change in the coupling parameter such thatiagonal is less than a threshold valug (i.e., [up|<up).
c—c/(2— a). For this case, the bubbling regime for the caseOtherwise, it is in the bursting phase. Hesg is very small
of =1 is always transformed into a bubbling regime for compared to the maximum bursting amplitude. For each
any other value otx. However, the riddling regime for the we follow the trajectory starting from the initial condition
case ofa=1 is transformed into a bubbling or riddling re- (0,0) until 50 000 laminar phases are obtained, and then we
gime depending on the value af For more details on the get the average laminar length(i.e., the average interburst
effect of asymmetry, refer to Reff12]. time) that scales withr as[21]

Ill. CHARACTERIZATION OF THE AVERAGE
INTERBURST TIME AND THE AVERAGE LIFETIME
OF CHAOTIC TRANSIENT

T~ M (16)

The plot of the scaling exponept (denoted by circlesver-

In this section, in terms of the NSEs we characterize thesysc is shown in Fig. 5. Ax increases toward the blow-out
noise effect on the power-law scaling behavior of the averaggjfurcation point, the value of. decreases, because the av-
time spent near the diagonal for the bubbling and riddlingerage laminar length shortens.
cases. The Scaling eXponent for such average characteristic For eachc in the regime of r|dd||ng, we consider an en-
time is found to be given by the reciprocal of the NSE, as insemble of trajectories starting from 1000 initial points ran-
the parameter-mismatching case. Consequently, both th@omly chosen with uniform probability in the range ®f
noise and the parameter mismatch have essentially the same1 —a,1) on the diagonal, and obtain the average lifetime
effect on the scaling behavior of the average characteristigf the chaotic transients. A trajectory may be regarded as
time. having escaped once the magnitude of deviatigfrom the

As an example, we consider the effect of additive noise 0jiagonal becomes larger than a threshold vaifiesuch that
both the bubbling and the riddling occurring in the regime of 5, ¢ point withju|>u? lies sufficiently outside the basin

weak synchronization foa=1.82 in the unidirectionally of the SCA. Thus, the average lifetimeis found to scale
coupled case ofr=1. In the presence of noise, the weakly with o as[21] ’

stable SCA is transformed into a bubbling attractor or a cha-
otic transient, depending on the global dynamics. For this
case the quantity of interest is the average tinmspent near T~0 * a7
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The plot of the scaling exponept (denoted by circlesver-  Because of the existence of positive local transverse
susc is given in Fig. 5. Asc decreases toward the blow-out Lyapunov exponents, the weakly stable SCA becomes sensi-
bifurcation point, the average lifetime shortens, and hencéve with respect to the variation of noise strength. To mea-
the value ofu decreases. sure the degree of such noise sensitivity, we have introduced
We note that the scaling exponentis associated with the  a quantifier, called the NSE, and quantitatively characterized
NSE ¢ as follows. For a givewr, consider a trajectory start- the noise sensitivity of the weakly stable SCA for both the
ing from a randomly chosen initial orbit point on the diago- pubbling and riddling cases occurring in the regime of weak
nal. Then, From Eq(11) the average characteristic timeat  synchronization. For the case of bounded noise, the values of
which the magnitude of the deviation from the diagonal be+he NSE have been found to become the same as those of the
comes the threshold valug . can be obtained: parameter sensitivity exponent, independently of whether the
s noise is additive or parametric. In terms of these NSEs, we
~og . (18 X .
have also characterized the noise effect on the power-law
Hence the Sca"ng exponeﬂtfor Tis given by the reciproca| scaling of the average interburst time and the average life-
of the NSES, time of chaotic transient. It has thus been found that the
scaling exponent for the average characteristic time and the
u=1/5. (19 NSE have the same reciprocal relation as in the parameter-
mismatching case. Consequently, the noise and the parameter
mismatch have basically the same effect on the power-law

. : - . scaling behavior of the average characteristic time. Finally,
noted by circles This reciprocal relation has also been con- - . .
firmed for the case of parametric noise. Furthermore, thel/® expect that the method of c.haracterlzmg the noise sensi-
same reciprocal relation between the scaling exponent for tvity of _the weakly stable SCA in terms of Fh(_e NSE may pe
and the parameter-sensitivity exponent exists also in thgeneralized to the coupled systems consisting of the high-
parameter-mismatching ca§ég]. Thus the scaling expo- dimensional maps such as thertd@ map or the oscillators.
nents forr in both cases of noise and parameter mismatch
also become the sani2l], because the values of the NSE
and the parameter sensitivity exponent are the same. Hence ACKNOWLEDGMENTS
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The reciprocal values af (denoted by crossgare also plot-
ted in Fig. 5, and they agree well with the valuesofde-
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