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Characterization of the noise effect on weak synchronization
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We investigate the noise effect on weak synchronization in two coupled identical one-dimensional~1D!
maps. Due to the existence of positive local transverse Lyapunov exponents, the weakly stable synchronous
chaotic attractor~SCA! becomes sensitive with respect to the variation of noise intensity. To quantitatively
characterize such noise sensitivity, we introduce a quantifier, called the noise sensitivity exponent~NSE!. For
the case of bounded noise, the values of the NSE are found to be the same as those of the exponent charac-
terizing a parameter sensitivity of the weakly stable SCA in presence of a parameter mismatch between the two
1D maps. Furthermore, it is found that the scaling exponent for the average time spent near the diagonal for
both the bubbling and riddling cases occurring in the regime of weak synchronization is given by the reciprocal
of the NSE, as in the parameter-mismatching case. Consequently, both the noise and parameter mismatch have
the same effect on the scaling behavior of the average characteristic time.
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I. INTRODUCTION

Recently, the phenomenon of synchronization in coup
chaotic systems has become a field of intensive study.
this case of chaos synchronization, a synchronous cha
motion occurs on an invariant subspace of the whole ph
space@1–4#. Particularly, this type of chaos synchronizatio
has attracted much attention, because of its potential pr
cal application in secure communication@5#.

If a synchronous chaotic attractor~SCA! on the invariant
subspace is stable against a perturbation transverse to
invariant subspace, it may become an attractor in the wh
phase space. Properties of transverse stability of the SCA
intimately associated with transverse bifurcations of unsta
periodic orbits embedded in the SCA@6–12#. If all such
unstable periodic orbits are transversely stable, the SCA
comes asymptotically stable, and hence we have ‘‘stro
synchronization. However, as the coupling parameter pa
through a threshold value, an unstable periodic orbit fi
becomes transversely unstable through a local bifurcat
After this first transverse bifurcation, trajectories may be
cally repelled from the invariant subspace when they visit
neighborhood of the transversely unstable periodic o
point. Thus, loss of strong synchronization begins with su
a first transverse bifurcation, and then we have ‘‘weak’’ sy
chronization. For this case, intermittent bursting or basin
dling may occur depending on the existence of an absorb
area, controlling the global dynamics, inside the basin
attraction@10–13#. In the presence of an absorbing area, a
ing as a bounded trapping vessel, locally repelled trajecto
from the invariant subspace are restricted to move within
absorbing area, and exhibit transient intermittent burst
from the invariant subspace@14,15#. On the other hand, in
the absence of such an absorbing area, the locally repe
trajectories will go to another attractor~or infinity!, and
hence the basin of attraction becomes riddled with a de
1063-651X/2003/67~1!/016217~8!/$20.00 67 0162
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set of repelling ‘‘holes,’’ belonging to the basin of anoth
attractor~or infinity! @16#.

However, in a real situation a small noise and a sm
mismatch between the subsystems are unavoidable. H
the effect of noise and parameter mismatching must be ta
into consideration for the study on the loss of chaos synch
nization. In the regime of weak synchronization, transvers
unstable periodic orbits are embedded in the SCA. Hen
when a typical trajectory visits the neighborhoods of su
unstable periodic orbits, it experiences local transverse re
sion from the diagonal. As a result, the typical trajectory m
have segments exhibiting positive local~finite time! trans-
verse Lyapunov exponents, even if the averaged transv
Lyapunov exponent is negative. Because of the existenc
these positive local transverse Lyapunov exponents,
weakly stable SCA becomes sensitive with respect to
variation of the noise intensity and mismatching parame
This is in contrast to the case of the strong synchroniza
that has no such sensitivity. Note also that, due to the e
tence of positive local Lyapunov exponents, strange nonc
otic attractors that appear typically in quasiperiodica
forced systems exhibit a sensitivity with respect to the ph
of the quasiperiodic force. Such phase sensitivity was ch
acterized quantitatively in terms of the phase sensitivity
ponent@17#. In a similar way, two of us~Jalnine and Kim!
introduced the parameter sensitivity exponent, and quan
tively characterized the degree of the parameter sensitivit
the weakly stable SCA@18#.

In this paper we investigate the effect of bounded noise
weak synchronization in two coupled identical on
dimensional~1D! maps with an invariant diagonal. To quan
titatively characterize the noise sensitivity of the weak
stable SCA, we introduce a quantifier, called the noise s
sitivity exponent~NSE!, in Sec. II. Thus the NSE that mea
sures the degree of the noise sensitivity becomes a quan
tive characteristic of the weakly stable SCA. As the coupli
parameterc is varied away from the point of the firs
©2003 The American Physical Society17-1
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transverse bifurcation, successive transverse bifurcation
periodic saddles embedded in the SCA occur. Hence
value of the NSE increases because local transverse re
sion of the embedded periodic repellers becomes more
more strong, and it tends to infinity asc approaches the
blow-out bifurcation point where the averaged transve
Lyapunov exponent becomes zero. As a result of this blo
out bifurcation, the weakly stable SCA becomes transvers
unstable@19#. Furthermore, the values of the NSE are fou
to become the same as those of the parameter sensi
exponent, because their values are determined only by
~same! local transverse Lyapunov exponents of the wea
stable SCA. In the presence of noise, the weakly stable S
is replaced by a bubbling attractor or a chaotic transient
both cases, the quantity of interest is the average time s
near the diagonal~i.e., the average interburst time and t
average chaotic transient lifetime! @15#. In terms of the NSE,
the noise effect on the power-law scaling behavior of su
average characteristic timet is characterized in Sec. III. As
the NSE increases, local transverse repulsion of the peri
repellers embedded in the SCA becomes strong, and hent
becomes short. It is thus found that the scaling exponen
t and the NSE has a reciprocal relation, as in the parame
mismatching case@18#. Hence the noise and parameter m
match have essentially the same effect on the power-
scaling behavior oft. Finally, we give a summary in Sec. IV

II. CHARACTERIZATION OF THE NOISE SENSITIVITY

In this section, we study the effect of additive and pa
metric noise on the weakly stable SCA. For the case of w
synchronization, the SCA becomes sensitive with respec
the variation of noise strength. We introduce a quantifi
called the NSE, and quantitatively characterize the noise
sitivity of the weakly stable SCA. It is thus found that th
values of the NSE become the same as those of the pa
eter sensitivity exponent, independently of whether the no
is additive or parametric.

We first investigate the effect of additive noise on we
synchronization in two coupled identical 1D maps@12#

T:H xn115F~xn ,yn!5 f ~xn ,a!1~12a!cg~xn ,yn!1sjn
(1)

yn115G~xn ,yn!5 f ~yn ,a!1c g~yn ,xn!1sjn
(2) ,

~1!

wherexn and yn are state variables of the subsystems a
discrete timen, local dynamics in each subsystem with
control parametera is governed by the 1D mapf (x,a)51
2ax2, c is a coupling parameter between the two su
systems, andg(x,y) is a coupling function of the form

g~x,y!5y22x2. ~2!

For a50, the coupling becomes symmetric, while for no
zeroa (0,a<1) it becomes asymmetric. The extreme ca
of asymmetric coupling witha51 corresponds to the unidi
rectional coupling. In such a way,a tunes the degree o
asymmetry in the coupling. In an ideal case without no
~i.e., s50), there exists an invariant synchronization lin
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y5x, in the (x2y) phase space. However, in a real situati
noise is unavoidable, and hence the diagonal is no lon
invariant. To take into consideration such noise effect, r
dom numbers are added to Eq.~1!. For this casejn

( i ) ( i
51,2) are statistically independent random numbers cho
at each discrete timen from the uniform distribution with a
zero mean̂ jn

( i )&50 and a unit variancêjn
( i )2&51. Hence

jn
( i ) are just bounded random values uniformly distributed

the interval @2A3,A3#, and s controls the ‘‘strength’’ of
such a random noise.

As an example, we choose the unidirectionally coup

FIG. 1. Effect of the additive noise withs50.0005 on weak
synchronization fora51.82 in the unidirectionally coupled case o
a51. ~a! A bubbling attractor and~b! the evolution of the trans-
verse variableun (5xn2yn) representing the deviation from th
diagonal versusn for the bubbling case ofc520.7. For the rid-
dling case ofc522.91 the SCA with a basin~gray region! riddled
with a dense set of repelling ‘‘holes’’ leading to divergent orb
~white region! for s50 is transformed into a chaotic transie
~black dots! for s50.0005 as shown in~c!. The sequence of$un% in
~b! and the chaotic transient in~c! are obtained from the trajectorie
starting from the same initial point (x0* ,y0* )5(0.5,0.5).
7-2
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case ofa51 @11#. For this case, the drive 1D map acts
the response 1D map, while the response 1D map does
influence the drive one. Here we fix the value ofa as a
51.82, and investigate the noise effect by varying the c
pling parameterc. For this case an SCA exists in the interv
of cb,l@.22.963#,c,cb,r@.20.677#. As the coupling pa-
rameterc passescb,l or cb,r , the SCA loses its transvers
stability through a blow-out bifurcation, and then a comple
desynchronization occurs. In the regime of synchronizat
a strongly stable SCA exists forct,l@.22.789#,c,ct,r@.
20.850#. For this case of strong synchronization, the SC
exhibits no noise sensitivity, because all periodic saddles
bedded in the SCA are transversely stable. However, as
coupling parameterc passesct,r andct,l , bubbling and rid-
dling transitions occur through the first transverse bifur
tions of periodic saddles, respectively, Ref.@11# and then we
have weak synchronization. For this case, the weakly st
SCA exhibits a noise sensitivity, because of local transve
repulsion of the periodic repellers embedded in the SC
Hence, however, small the noise strengths, a persistent in-
termittent bursting, called the attractor bubbling, occurs
the regime of bubbling (ct,r,c,cb,r). Figures 1~a! and 1~b!
show such attractor bubbling fors50.0005. On the othe
hand, in the regime of riddling (cb,l,c,ct,l), the weakly
stable SCA with a riddled basin fors50 is transformed into
a chaotic transient~denoted by black dots! with a finite life-
time in the presence of noise, as shown in Fig. 1~c!. As c is
changed away fromct,l or ct,r , transversely unstable per
odic repellers appear successively in the SCA via transv
bifurcations. Then the degree of the noise sensitivity of
SCA increases, because of the increase in the strengt
local transverse repulsion of the periodic repellers embed
in the SCA.

To quantitatively characterize the noise sensitivity of t
SCA, we consider an orbit$(xn ,yn)% starting from an initial
point on the diagonal~i.e., x05y0). As the strength of the
local transverse repulsion from the diagonal increases,
SCA becomes more and more sensitive with respect to
variation of s. Such noise sensitivity of the SCA fors50
may be characterized by calculating the derivative of
transverse variableun (5xn2yn), denoting the deviation
from the diagonal, with respect tos,

]un11

]s U
s50

5
]xn11

]s U
s50

2
]yn11

]s U
s50

5F ]F~xn ,yn!

]xn
U

s50

2
]G~xn ,yn!

]xn
U

s50
G]xn

]s U
s50

1F ]F~xn ,yn!

]yn
U

s50

2
]G~xn ,yn!

]yn
U

s50
G]yn

]s U
s50

1@jn
(1)2jn

(2)#.

~3!

Using Eq.~1!, we obtain the following recurrence relation
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]un11

]s U
s50

5@ f x~xn* ,a!2~22a!ch~xn* !#
]un

]s U
s50

1@jn
(1)2jn

(2)#, ~4!

wheref x is the derivative off with respect tox, $(xn* ,yn* )% is
the synchronous orbit withxn* 5yn* for s50, andh(x) is a
reduced coupling function defined by h(x)
[]g(x,y)/]yuy5x @20#. Iterating the formula~4! along a
synchronous trajectory starting from an initial point (x0* ,y0* )
on the diagonal, we may obtain derivatives at all subsequ
points of the trajectory:

]uN

]s U
s50

5 (
k51

N

RN2k~xk* !@jk21
(1) 2jk21

(2) #1RN~x0* !
]u0

]s U
s50

,

~5!

where

RM~xm* !5 )
i 50

M21

@ f x~xm1 i* ,a!2~22a!ch~xm1 i* !# ~6!

andR051. Note that the factorRM(xm* ) is associated with a
local (M -time! transverse Lyapunov exponentsM

T (xm* ) of the
SCA that is averaged overM synchronous orbit points start
ing from xm* as follows:

sM
T ~xm* !5

1

M
lnuRM~xm* !u. ~7!

Thus RM(xm* ) becomes a local~transverse stability! multi-
plier that determines local sensitivity of the transverse m
tion during a finite timeM. As M→`, sM

T approaches the
usual transverse Lyapunov exponentsT that denotes the av
erage exponential rate of divergence of an infinitesimal p
turbation transverse to the SCA. If we introduce a new r
dom variablehn5jn

(1)2jn
(2) , Eq. ~5! reduces to

]uN

]s U
s50

5SN
(n)~x0* ![(

k51

N

RN2k~xk* !hk21 , ~8!

because]u0 /]sus5050. Here hn are bounded random
numbers distributed in the interval@22A3,2A3#, and their
distribution density function will be given below.

For the case of weak synchronization, transversely
stable periodic repellers are embedded in the SCA. Whe
typical trajectory visits neighborhoods of such repellers a
their preimages, it has segments experiencing local repul
from the diagonal. Consequently, the distribution of loc
transverse Lyapunov exponentssM

T for a large ensemble o
trajectories and largeM may have a positive tail@see Fig. 5
in Ref. @18##. For the segments of a trajectory exhibiting
positive local transverse Lyapunov exponent (sM

T .0), the
local multipliers RM @56exp(sM

T M)# can be arbitrarily
large, and hence the partial sumSN

(n) may be arbitrarily large.
This implies the unbounded growth of the derivativ
]uN /]sus50 asN tends to infinity. Consequently, the weak
stable SCA may exhibit a noise sensitivity. As an examp
7-3
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we consider the case of weak synchronization forc520.7.
If we iterate Eqs.~1! and ~4! starting from an initial orbit
point (x0* ,y0* ) on the diagonal and]u0 /]sus5050, then we
obtain the partial sumSN

(n)(x0* ) of Eq. ~8!. The results of
such calculation for a trajectory starting from (x0* ,y0* )
5(0.5,0.5) are presented in Fig. 2~a!. The quantitySN

(n)

seems very intermittent. However, looking only at the ma
mum

gN~x0* !5 max
0<k<N

uSk
(n)~x0* !u, ~9!

one can easily see the boundedness ofSN
(n) . Figure 2~b!

shows such functiongN . Note thatgN grows unboundedly
and exhibits no saturation. Consequently, the weakly sta
SCA exhibits a noise sensitivity. This is in contrast to t
case of strong synchronization for which the SCA has
noise sensitivity because the functiongN saturates withN.

The growth rate of the functiongN(x0* ) with time N rep-
resents a degree of the noise sensitivity, and can be used
quantitative characteristic of the weakly stable SCA. Ho
ever,gN(x0* ) depends on a particular trajectory. To obtain
representative quantity, we consider an ensemble of in
points randomly chosen with uniform probability in th

FIG. 2. ~a! Intermittent behavior of the partial sumuSN
(n)u for a

51, a51.82, andc520.7. ~b! The functiongN looking only at
the maximum ofuSN

(n)u. Note thatgN grows unboundedly withN.
The results in~a! and ~b! are obtained from the trajectory startin
from the initial orbit point (x0* ,y0* )5(0.5,0.5).
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range ofxP(12a,1) on the diagonal, and take the minimu
value ofgN with respect to the initial orbit points,

GN5min
x0*

gN~x0* !. ~10!

Figure 3~a! shows a noise sensitivity functionGN for c5
20.7. Note thatGN grows unboundedly with some powerd,

GN.Nd. ~11!

Here the valued.2.58 is a quantitative characteristic of th
noise sensitivity of the SCA, and we call it as NSE. In ea
regime of bubbling or riddling, we obtain the NSEs b
changing the coupling parameterc from the bubbling or rid-
dling transition point to the blow-out bifurcation point. Fo
obtaining a satisfactory statistics, we also consider 100
sembles for eachc, each of which contains 100 initial orbi
points randomly chosen with uniform probability in th
range ofxP(12a,1) on the diagonal and choose the av
age value of the 100 NSEs obtained in the 100 ensemb
Figure 3~b! shows the plot of such NSEs~denoted by circles!
versusc. Note that the NSEd monotonically increases asc is

FIG. 3. ~a! Noise sensitivity functionGN for a51, a51.82,
andc520.7 that takes the minimum value ofgN in the ensemble
containing 100 randomly chosen initial orbit points on the diagon
It is well fitted with a dashed line with sloped.2.58. ~b! Plot of the
NSEsd ~denoted by the open circles! versusc for the bubbling and
riddling cases fora51 anda51.82. Note that the values of th
NSEs are the same as those of the parameter sensitivity expo
~denoted by the crosses! within the numerical accuracy.
7-4
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CHARACTERIZATION OF THE NOISE EFFECT ON . . . PHYSICAL REVIEW E67, 016217 ~2003!
varied away from the bubbling or riddling transition poin
and tends to infinity asc approaches the blow-out bifurcatio
point. This increase in the noise sensitivity of the SCA
caused by the increase in the strength of local transv
repulsion of periodic repellers embedded in the SCA. Af
the blow-out bifurcation, the weakly stable SCA is tran
formed into a transversely unstable chaotic saddle exhibi
an exponential noise sensitivity. Thus a complete desync
nization occurs.

We now compare the formula~8! for the partial sumSN
(n)

with the following analogous formula forSN
(p) that has been

obtained in the parameter-mismatching case@18#:

]uN

]e U
e50

5SN
(p)~x0* ![(

k51

N

RN2k~xk* ! f a~xk21* ,a!, ~12!

wheree is a mismatching parameter,f a is the derivative of
f (x,a) with respect toa, andRN2k are local multipliers of
Eq. ~6!. As in the case of noise, the weakly stable SCA e
hibits a parameter sensitivity because of the unboun
growth of the partial sumSN

(p) with N. For each case of the
noise and parameter mismatch,SN

(n,p) represents the sum o
the ~same! local multipliersRN2k , multiplied by some coef-
ficients. For the case of noise, the coefficientshk21 are ran-
dom numbers chosen from the bounded distribution den
function, P(h)52 1

12 uhu1A3/6, in the interval
@22A3,2A3# @see Fig. 4~a!#, which can be easily obtaine
using the uniform distribution density functions in the inte
val @2A3,A3# for the random variablesj1 andj2. Since the
random numbershn are bounded, the boundedness of t
partial sumSN

(n) is determined just by the local multiplier
RM . For the case of parameter mismatch, the coefficients
the derivative valuesf a(xk21* ,a) (52xk21* 2 ). Since the syn-
chronous trajectory$xn* % on the diagonal is chaotic, the co
efficientsf a may be regarded as ‘‘weakly correlated’’ rando
numbers. Using a histogram method, we obtain the distr
tion density function forf a , which is shown in Fig. 4~b!.
Since the values off a are bounded in the interval@21,0#,
the boundedness of the partial sumSN

(p) is also determined
only by the ~same! local multipliersRM , as in the case o
noise. This implies that the noise sensitivity functionGN
grows unboundedly with the same power as in the cas
parameter mismatch. Hence the values of the NSE~denoted
by circles! become the same as those of the parameter
sitivity exponent~denoted by crosses!, as shown in Fig. 3~b!.
Note that this is a general result valid for any case
bounded noise.

In addition to the case of additive noise, we also consi
the case where the nonlinearity parameters of the 1D m
have small random variations due to external noise. Th
parametric fluctuations can be simulated by modulating
values of the nonlinearity parameters by uniform rand
numbers in a small interval. Thus we investigate the effec
such parametric noise on weak synchronization in the
lowing two coupled 1D maps:

T:H xn115 f ~xn ,a1sjn
(1)!1~12a!cg~xn ,yn!,

yn115 f ~yn ,a1sjn
(2)!1cg~yn ,xn!.

~13!
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Herej (1) andj (2) are bounded random numbers chosen fr
the uniform distribution with a zero mean and a unit va
ance, ands represents the amplitude of noise. Following t
same procedure as in the case of additive noise, one
easily obtain the following recurrence relation for the deriv
tive of the transverse variableun (5xn2yn) with respect to
the noise strengths,

]un11

]s U
s50

5@ f x~xn* ,a!2~22a!ch~xn* !#
]un

]s U
s50

1 f a~xn* ,a!@jn
(1)2jn

(2)#. ~14!

Iterating the above formula along the synchronous traject

FIG. 4. ~a! Distribution density functionP(h) (52
1

12 uhu
1(A3/6)) for the random variableh (5j (1)2j (2)). ~b! and ~c!
Distribution density functions for the variablesf a(x) (52x2) and
h f a(x) in the case ofa51 anda51.82. For these cases, the di
tribution density functions are obtained using a histogram met
as follows. We divide each interval„@21,0# for the case~b! and
@22A3,2A3# for the case of~c!… into 1000 bins, and get the dis
tribution density from the data of 106 orbit points.
7-5
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KIM, LIM, JALNINE, AND KUZNETSOV PHYSICAL REVIEW E 67, 016217 ~2003!
starting from an initial point (x0* ,y0* ) on the diagonal, we
obtain the derivatives at all points of the trajectory,

]uN

]s U
s50

5SN
(n)~x0* ![(

k51

N

RN2k~xk* !hk21f a~xk21* ,a!,

~15!

wherehn5jn
(1)2jn

(2) andRN2k are local multipliers of Eq.
~6!. Comparing this formula with Eq.~8!, one can see tha
the only difference between them is the coefficients of
~same! local multipliers RN2k . For the case of parametri
noise, the coefficientshk21f a(xk21* ,a) are also weakly cor-
related random numbers, because the synchronous traje
$xn* % on the diagonal is chaotic. The distribution dens
function forh f a is presented in Fig. 4~c!. Since the values o
h f a are bounded in the interval@22A3,2A3#, the coeffi-
cients have no effect on the unbounded growth ofSN

(n) , as in
the case of additive noise. Consequently, the values of
NSE for both cases of additive and parametric noise bec
the same, which has also been numerically confirmed in
unidirectionally coupled case ofa51. In this sense, the ef
fect of parametric noise on weak synchronization becom
the same as that of the additive noise.

So far, we have investigated the noise effect in the un
rectionally coupled case with the asymmetry parametea
51. Through Eq.~4!, one can easily see that the NSE for
given (a,c) in the case ofa51 is the same as that for th
value of @a,c/(22a)# in other coupled 1D maps with 0
<a,1 in Eq. ~1!. Thus, the results of the NSEs given
Fig. 3~b! may be converted into those for the case of gene
a only by a scale change in the coupling parameter such
c→c/(22a). For this case, the bubbling regime for the ca
of a51 is always transformed into a bubbling regime f
any other value ofa. However, the riddling regime for the
case ofa51 is transformed into a bubbling or riddling re
gime depending on the value ofa. For more details on the
effect of asymmetry, refer to Ref.@12#.

III. CHARACTERIZATION OF THE AVERAGE
INTERBURST TIME AND THE AVERAGE LIFETIME

OF CHAOTIC TRANSIENT

In this section, in terms of the NSEs we characterize
noise effect on the power-law scaling behavior of the aver
time spent near the diagonal for the bubbling and riddl
cases. The scaling exponent for such average characte
time is found to be given by the reciprocal of the NSE, as
the parameter-mismatching case. Consequently, both
noise and the parameter mismatch have essentially the s
effect on the scaling behavior of the average character
time.

As an example, we consider the effect of additive noise
both the bubbling and the riddling occurring in the regime
weak synchronization fora51.82 in the unidirectionally
coupled case ofa51. In the presence of noise, the weak
stable SCA is transformed into a bubbling attractor or a c
otic transient, depending on the global dynamics. For
case the quantity of interest is the average timet spent near
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the diagonal. For the case of the bubbling attractor,t is the
average interburst time, while for the case of the chao
transient,t is its average lifetime. Asc is varied from the
bubbling or riddling transition point,t becomes short be
cause the strength of local transverse repulsion of perio
repellers embedded in the SCA increases.

For the case of bubbling, the bubbling attractor is in t
laminar phase when the magnitude of the deviation from
diagonal is less than a threshold valueub* ~i.e., uunu,ub* ).
Otherwise, it is in the bursting phase. Hereub* is very small
compared to the maximum bursting amplitude. For eachc,
we follow the trajectory starting from the initial conditio
~0,0! until 50 000 laminar phases are obtained, and then
get the average laminar lengtht ~i.e., the average interburs
time! that scales withs as @21#

t;s2m. ~16!

The plot of the scaling exponentm ~denoted by circles! ver-
susc is shown in Fig. 5. Asc increases toward the blow-ou
bifurcation point, the value ofm decreases, because the a
erage laminar length shortens.

For eachc in the regime of riddling, we consider an en
semble of trajectories starting from 1000 initial points ra
domly chosen with uniform probability in the range ofx
P(12a,1) on the diagonal, and obtain the average lifetim
of the chaotic transients. A trajectory may be regarded
having escaped once the magnitude of deviationun from the
diagonal becomes larger than a threshold valueuc* such that
an orbit point withuuu.uc* lies sufficiently outside the basin
of the SCA. Thus, the average lifetimet is found to scale
with s as @21#

t;s2m. ~17!

FIG. 5. ~a! Plot of the scaling exponentsm ~open circles! for the
average characteristic time~i.e., average interburst time for the bub
bling case and average chaotic transient lifetime for the riddl
case! versusc in the case of additive noise whena51 and a
51.82. They agree well with the reciprocals of the NSEs~crosses!.
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CHARACTERIZATION OF THE NOISE EFFECT ON . . . PHYSICAL REVIEW E67, 016217 ~2003!
The plot of the scaling exponentm ~denoted by circles! ver-
susc is given in Fig. 5. Asc decreases toward the blow-o
bifurcation point, the average lifetime shortens, and he
the value ofm decreases.

We note that the scaling exponentm is associated with the
NSEd as follows. For a givens, consider a trajectory start
ing from a randomly chosen initial orbit point on the diag
nal. Then, From Eq.~11! the average characteristic timet at
which the magnitude of the deviation from the diagonal b
comes the threshold valueub,c* can be obtained:

t;s21/d. ~18!

Hence the scaling exponentm for t is given by the reciproca
of the NSEd,

m51/d. ~19!

The reciprocal values ofd ~denoted by crosses! are also plot-
ted in Fig. 5, and they agree well with the values ofm ~de-
noted by circles!. This reciprocal relation has also been co
firmed for the case of parametric noise. Furthermore,
same reciprocal relation between the scaling exponent ft
and the parameter-sensitivity exponent exists also in
parameter-mismatching case@18#. Thus the scaling expo
nents fort in both cases of noise and parameter misma
also become the same@21#, because the values of the NS
and the parameter sensitivity exponent are the same. H
the noise and parameter mismatch have the same effec
the power-law scaling behavior of the average character
time t.

IV. SUMMARY

We have studied the effect of additive and parame
noise on weak synchronization in coupled identical 1D ma
-

.

ni

o

.
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Because of the existence of positive local transve
Lyapunov exponents, the weakly stable SCA becomes se
tive with respect to the variation of noise strength. To me
sure the degree of such noise sensitivity, we have introdu
a quantifier, called the NSE, and quantitatively characteri
the noise sensitivity of the weakly stable SCA for both t
bubbling and riddling cases occurring in the regime of we
synchronization. For the case of bounded noise, the value
the NSE have been found to become the same as those o
parameter sensitivity exponent, independently of whether
noise is additive or parametric. In terms of these NSEs,
have also characterized the noise effect on the power-
scaling of the average interburst time and the average
time of chaotic transient. It has thus been found that
scaling exponent for the average characteristic time and
NSE have the same reciprocal relation as in the parame
mismatching case. Consequently, the noise and the param
mismatch have basically the same effect on the power-
scaling behavior of the average characteristic time. Fina
we expect that the method of characterizing the noise se
tivity of the weakly stable SCA in terms of the NSE may b
generalized to the coupled systems consisting of the h
dimensional maps such as the He´non map or the oscillators
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